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Pade Approximants as Limits of Rational Functions
of Best Approximation, Real Domain*

J. L. WALSH

University ofMaryland, Department of Mathematics, College Park, Maryland 20742

The Pade approximant to a given function f(x) is the rational function
Pnv(x) of type (n, v):

So + SIX + + Snxn
to + tix + + t-xV

'

with contact of the highest order at the origin to f(x) of class c(n+v+1)[O, 1]:

(1)

It is shown in [1] that provided a certain determinant of the ak is not zero,
the rational function Rn.vC€, x) of type (n, v) of best approximation to f(x)
(assumed analytic) on the disc I x I < € as € -+°approaches as a limit the
function Pnv(x) on any closed set within which Pnv(x) is analytic. The object
of the present note is to prove the analogous theorem in the real domain,
a hitherto open question suggested to me by Dr. Oved Shisha.

The method ofPade is as follows. Withf(x) given by (1) we need to deter
mme

As Pade shows, the determination of the Si and t i is equivalent to the deter
mination of to , tl , ... , tv and the di , where we set

n+v v n+v

L ajxi • L tkXk - L dixi + O(xn+v+1)
j=O k=O i~O

(3)

and where dn+l = dn+2 = ... = dn+v = O. This determination is in turn
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equivalent to the solution for the numbers to , tl ,..., tv from the two sets of
equations

aoto = do = So , l
alto + aotl = dl = Sl ,

anto + an-ltl + ... + an-vtv = dn = Sn ;

an+lto+ antI + + an-vHtv = dnH = 0, l
an+2to + an+1tl + ~.a~_~+~tv. =: ~~+~ =0,

an+vto + an+v-ltl + + antv - dn+v - O.

(4)

(5)

Equations (4) and (5) are written for the case n ~ v; in the contrary case
the numbers ai with negative subscripts are to be taken as zero.

We shall treat Rn.(e, x) formally by equations precisely similar to (3), (4),
and (5), where I(x) is still given by (1), but except that Rn.(e, x) of type
(n, v) is now determined by its property of best approximation to I(x) on
the segment 8: [0, e]; we have

R (e x) = Uo+ ... + unx
n = ~v b x k + O(xn+v+l) (6)

nv' v+"'+v yv L.k ,o ~. k=O

where the coefficients depend on e.
These coefficients bo , bl , ..., bv are related to the Ui and the Vi by the sets

of equations

n+v v fl+V

~ bjxj . I VkXk = I UiXi + O(xn+v+l),
j~U k=O i=O

bovo = UO, l
blVo + bOvl = Ul ,

bnvo+ bn-1vo+ .:..~ ~n~v~v ~. ~n ;

bnHvo+ bnv1 + + bn-v+lvv = 0, l
bn+2vo+ bn+~v~ :- ~ ..b~_:+2VV =o~

bn+vvo + bn+v-lvO + + bnvv - 0,

(7)

(8)

(9)

these equations too are written for n ~ v, but for v > n we consider all bi

with negative subscripts to be zero. Of course, equations (9) can perhaps
be continued, but that is not necessary for our present purposes.
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We shall prove our principal result:

THEOREM 1. Let the function

227

aO =1= 0,

of class Cln+v+1l[O, 1] or of some class c(n+v+1l[O, E], E > 0, for E (> 0)
sufficiently small, and fixed n and v, and let RniE, x) denote the function of
type (n, v) ofbest approximation to f(x) in the (uniform) sense of Tchebycheff
on the interval 15: °~ x ~ E. Suppose we have

an an- 1 an-v+l

L1 n- 1•v- 1 = an+1 an an- v+2 =1= 0; (10)

an+v- 1 an+v an

then as E approaches zero RniE, x) approaches the Pade function Pnix) of (2)
on any clased set where Pnlx) is analytic.

Both Pnlx) and RnlE, x) are of type (n, v), so by the extremal property
of RnlE, x) we have

[max If(x) - RnlE, x)/, x on 15] ~ [max If(x) - Pnv(x)l, x on 0] (11)

and by Taylor's theorem with remainder, for x on 15 for the (Tchebycheff)
norms

where M = max[1 r+v+1(x) - p::-v+l(x)l, x on o]{(n + v + I)!. Then we also
have

In other symbols we have

II 'f (ak - bk) xk II ~ 2MEn+v+1.
k=O 8

(12)

(13)

It now follows from Lemma 2 proved below that as a consequence of (13)

for k = 0, 1,..., n + v. (14)

The conclusion of Theorem 1 follows, from the fact that these n + v + 1
coefficients bk are "near" the corresponding ak' the equations (9) and (8)
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for the Uk and Vk are "near" the equations (5) and (4) for the Sk and tk respec
tively, and hence their unique solutions Uk and V" are "near" the Sk and tk •

To be more explicit, let us adjoin to the system (9) the equation Vo = V,

where V is a multiplicative parameter. We now have v + 1 equations with
v + I unknowns Vo , VI"'" Vv ; for E sufficiently small the determinant of
the system is different from zero, by (10) and (14). The numbers VI , V2 , ••• , Vv

and Uo , U1 , ••. , Un are then uniquely determined by (8) from bo , b1 , ••• , bn+v

in terms of the parameter v. Of course equation (6) determines the Uj and Vj

from the bk merely to within a multiplicative constant; we shall consider
such determination as determining the U; and V; uniquely. We adjoin similarly
the equation to = v to the system (5), so (5) determines to, t1 , ••• , tv, and (4)
determines the numbers So, SI , ••• , Sn uniquely in terms of the multiplicative
parameter v. The coefficients U; and Vj in (6) can be made to differ by as
small an amount as we please from the corresponding coefficients s; and tj

in (2), merely by choosing E sufficiently small, and we may choose vo = to =
v = 1; the conclusion of Theorem 1 follows.

It remains to establish two lemmas.

LEMMA 1. With the hypothesis P(x) = L:~~o A~\ I P(x) I :s;; Q for°:s;; x :(; 1, we have also I A j I :(; CQ, where C is independent of Q.

Let the Tchebycheff polynomials to(x), t1(x), ... , tN(x) of respective degrees
0,1,..., N be normal and orthogonal on [0, 1]. Then we have

N

P(x) = L Bktk(X),
k~O

and Bessel's inequality

(15)

N 1

L Bk2 :s;; f [P(X)]2 dx :(; Q2.
k~O 0

(16)

However, tk(x) can be expressed uniquely in terms of the set {xj,j = 0, I, ..., k}:

where the numerical coefficients Ckj are well-known. Then we have

N

P(x) - L Bk(CkO + C k1X + ... + CkkX)N
k=O

N N N

= L BkCkO + L B kC k1X + ... + L BkCkkXN •
k=O k=l k~N
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Moreover, since the powers of x are linearly independent on [0, 1], we may
write

N

Ao = L BkCkO ,
k~O

N

Al = L BkCkl ,... ,
k~1

N

AN = L BkCkk .
k=N

By the Cauchy-Schwarz inequality we have

~ Q2 [~O C~o + ~I C~I + ... + iNczkJ.
which gives the conclusion of Lemma 1.

(17)

LEMMA 2. With the hypothesis pet) = L~o Ak't\ IP(t)/ ~ Ql for
o~ t ~ r, we have also I A/ I ri ~ C'QI, where C' is independent of QI
andr.

We set here t = rx, dt = r dx, x = t/r; then we study P(rx) on 0 ~ x ~ 1,
whence

f [P(rx)]2 dx ~ Q12,
o

N

P(rx) == L (Ak'r k) xk.
k=O

A conclusion of Lemma 1 may be taken as (17), now in the form

(18)

where we have in the notation of Lemma 2 (0 ~ x ~ 1)

N I

L (A k'rk)2/C ~ f [P(rx)]2 dx ~ Q12.
k=O n

We derive from (19) the conclusion of Lemma 1:

IA/ I ri ~ C' . QI .

(19)

In the proof of Theorem 1, we have (13), which may be taken in the form
(n + v constant)

"+v
I L: (ak - bk) xk I ~ 2Me,,+v+1,

k-O
for 0 ~ x ~ e.
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There follows by Lemma 2

J. L. WALSH

k = 0,1,2,... , n + v,

which yields (14) and thus completes the proof of Theorem 1.
It may be noticed that the conclusion of Theorem 1 follows from (11)

without explicit extremal assumptions on Rnlx, E).
The problems of [1, ,,4] and of the present Theorem 1 were mentioned

in [2] regarding the polynomial Pno(x) as the limit of the polynomial Rno(x, e)
as e ---+ 0, both in the real case and complex case, but without the firm con
clusions on Pnlx) and Rnlx, e) established in [1] and here.
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